ves esta página sin formato por que esta hecha cumpliendo el estándar web CSS 2.
tú navegador no soporta este estándar, o tienes dicho soporte desactivado.
si estas en el primer caso, actualízate. merece mucho la pena.

Ecos del futuro

Reflexiones sobre ciencia, economía, ecología, política y comportamiento humano

Archivos

<Mayo 2018
Lu Ma Mi Ju Vi Sa Do
  1 2 3 4 5 6
7 8 9 10 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30 31      


Últimos comentarios

  • Pedro J. en Perihelio, eras glaciales y cambio cimático
  • Pirx en Perihelio, eras glaciales y cambio cimático
  • Pedro J. en Perihelio, eras glaciales y cambio cimático
  • Tere en Perihelio, eras glaciales y cambio cimático
  • Pedro J. en Nobel de la paz e ignorancia
  • Pedro J. en El oso polar famélico y la comunicación del cambio climático
  • Pedro J. en Nobel de la paz e ignorancia
  • Jose en Materia oscura
  • Pedro J. en Misión a Marte y radiación cósmica
  • Pedro J. en El lío con la ecuación más famosa de la física


  • Categorías

  • Acertijos
  • Astronomia
  • Ateismo
  • Biologia
  • Cambio climatico
  • Civilizacion
  • Comportamiento humano
  • Corporaciones
  • cortos
  • Crisis
  • Cristianismo
  • Destino
  • Dinero
  • Ecologia
  • Economia
  • Educacion
  • Energia
  • Enlaces
  • Escepticismo
  • Etica
  • Evolucion
  • Extincion
  • Felicidad
  • Fisica
  • Futuro
  • Genetica
  • Globalizacion
  • Guerra
  • Historia
  • Humor
  • Islam
  • Libros
  • Longevidad
  • Loteria
  • Metodo cientifico
  • Neurologia
  • Nuclear
  • Ocio
  • Petroleo
  • Política
  • Psicologia
  • Religion
  • Riesgo
  • Salud
  • Sociedad
  • Tecnologia
  • Trabajo

  • Series

  • Mecánica cuántica. En progreso

  • Materia oscura

  • Economía de la práctica religiosa

  • Imagen del principio del universo

  • Ahogado en una supercuerda


    En la red

  • Antigua página personal
  • Tutorial de Cosmología
  • @ecosdelfuturo
  • La ciencia del cambio climático


    Creative Commons License
    Esta obra está bajo una licencia de Creative Commons.


    2006-2017

    Pedro J. Hernández



    Blogalia

    Blogalia

  • Inicio > Historias > El lío con la ecuación más famosa de la física

    El lío con la ecuación más famosa de la física


    Esta entrada empezó a fraguarse después de leer un artículo en El Mundo donde Antonio Ruiz de Elvira intentaba explicar el significado de la ecuación más famosa de la física E = m c² y al que César Tomé calificó, con mucho acierto, de anti-divulgación.

    El objetivo no es sin embargo competir por la explicación más sencilla, divulgativa y entretenida de la conocida ecuación. Ya eso se ha hecho hasta la saciedad y desde luego no es mi intención competir con la explicaciones de monstruos de la divulgación como Neil Tyson, Alan Guth, Brian Greene o Brian Cox



    Al contrario, no pretendo tanto hacer divulgación en el sentido de hacer creer al lector que ha entendido algo, ocultando las complejidades, sino mostrarle lo importante que es atacar los conceptos desde diferentes perspectivas, incluyendo la histórica con el uso de fuentes originales.

    Advertencia: habrá fórmulas, aunque limitadas a multiplicaciones, divisiones, cuadrados, raíces cuadradas y el teorema de Pitágoras. Sin embargo, trataré de que el lector pueda saltárselas a conveniencia y aún el texto pueda resultar legible e interesante… o al menos comprensible. Y para el lector que no quiera entrar en las complejidades, recordar las palabras de Richard Feynman: “Si no te gusta, vete a otra parte. Por ejemplo a otro universo donde las reglas sean más sencillas”.

    Lo primero es lo primero: cómo utilizamos la ecuación

    Sin pararnos ahora en el significado de las cosas, lo primero que tenemos que entender es qué representa cada uno de los símbolos.


    E es energía y se mide en julios, aunque ciertamente sea una unidad muy poco utilizada. Todos estamos más familiarizados con la caloría o con el kwh por ejemplo. Los físicos de partículas en cambio prefieren el electronvoltio (eV) y suelen medir las masas de las partículas en esta unidad de energía, aprovechando precisamente la presunta equivalencia en la famosa ecuación

    m es la masa, un concepto con una larga historia llena de contradicciones, algunas de las que jugarán un papel relevante en el significado último de esa m.

    c es la velocidad de la luz y c² es, como estoy seguro que todo los lectores sabrán, el producto c × c. La velocidad de la luz es, redondeando, 300 millones de metros por segundo (3 × 10⁸ m/s) y su cuadrado 9 × 10¹⁶ m²/s² (o, equivalentemente, J/kg)

    Se suele mostrar lo elevada de esa cifra calculando que un solo gramo de materia convertido totalmente en energía pueda generar 90 billones de julios (10⁻³ kg × 9 × 10¹⁶ J/kg = 9 × 10¹³ J) o, en números redondos, unos 20 kilotones, la energía generada por la explosión de Fat Man en Nagasaki.


    La masa se convierte en energía

    Vayamos con un ejemplo más interesante. El núcleo de nuestro Sol es un auténtico reactor nuclear de fusión donde se producen una serie de reacciones nucleares algo complicadas pero que se puede resumir en que cuatro núcleos de hidrógeno (protones) se convierten en un núcleo de helio (dos protones y dos neutrones)


    Si nos vamos a la tabla periódica de los elementos, podemos observar que un átomo de helio pesa algo menos que cuatro átomo de hidrógeno, de hecho un 0,7% menos. ¿Qué ha ocurrido con esa masa desaparecida?


    Recordemos de la secundaria que una unidad de masa atómica (uma) equivale a 1,66 × 10⁻²⁷ kg. El defecto de masa entre el helio y los cuatro hidrógenos es, mirando de nuevo la tabla periódica, 4 × 1.0079 - 4.0026 = 0,029 uma. Podemos convertir esa masa en energía utilizando de nuevo la famosa ecuación de Einstein

    E = m c² = 0,029 uma × 1,6 10⁻²⁷ kg × 9 10¹⁶ J/kg ~ 4,43 10⁻¹² J ~ 26 MeV

    Los físicos nucleares y de partículas dirían que el defecto de masa de esa serie de reacciones nucleares es de unos 26 MeV, que en realidad es una unidad de energía, no de masa. Ese es un ejemplo práctico del uso de la ecuación de Einstein.

    Sabemos además que en un segundo el Sol emite unos 4 × 10²⁶ J de energía[1]. Vamos a utilizar nuestra famosa ecuación para ver cuánta masa ha perdido el Sol en un solo segundo

    m = E / c² = 4 10²⁶ / 9 10¹⁶ = 4 10⁹ kg

    o, lo que es lo mismo, unos 4 mil millones de kg de masa pierde el Sol cada segundo debido a las reacciones de fusión que se producen en su núcleo. Alguien podría pensar que con esa cantidad de masa perdida nos podríamos quedar pronto sin nuestra estrella, pero, en términos relativos, se trata del equivalente para una persona de perder el peso de un virus cada segundo. De hecho, en ese tiempo, perdemos en torno a unas 10 células de la piel.

    Como curiosidad, esos dos número que hemos calculado anteriormente le permitiría a cualquier alumno de bachillerato estimar de manera muy sencilla el flujo de neutrinos solares. Puesto que en cada cadena protón-protón (como vemos en la figura anterior) se producen dos neutrinos, tendremos

    2 × (4 × 10²⁶ J )/ (4,43 10⁻¹² J) ~ 2 10³⁸ neutrinos cada segundo

    Ese número es enorme, pero no nos dice mucho. Si dividimos por la superficie de las esfera cuyo radio es una unidad astronómica (distancia Tierra-Sol) y la expresamos en cm, obtendremos el número de neutrinos que atraviesa cada cm² de nuestra piel por segundo


    O en cifras que todos podamos entender, unos 70 mil millones de neutrinos. En números redondos, un billón de neutrinos han atravesado el dedo del lector mientras leía la frase anterior. ¡Y sin embargo lo complicada que resulta su detección!

    En resumen, hemos visto que es posible convertir masa en energía en una cantidad dada por la ecuación de Einstein.

    La energía también puede convertirse en masa

    Sigamos investigando un poco más sobre lo que ocurre en las reacciones de fusión del Sol. Si cuatro protones se han convertido en un átomo de helio y un átomo de helio tiene dos protones y dos neutrones, ¡voilà!; por arte de magia dos protones han tenido por el camino que transmutarse en neutrones. Como se ve en la figura anterior de la cadena protón-protón, en esa reacción además se produce un positrón (antipartícula del electrón) y un neutrino. Se trata de una desintegración beta. Pero hay un problema. Esas tres partículas pesan más que la partículas original.

    En el caso del Sol, cuando se produce la colisión de dos protones, se forma temporalmente un núcleo de Helio-2 (diprotón) que es altamente inestable. Habitualmente, este He-2 inestable vuelve a desintegrarse, produciendo de nuevo dos protones. Pero en una de cada 10²⁸ de estas colisiones, se produce un núcleo de Deuterio donde uno de los protones se transmuta en un neutrón a costa de la energía nuclear de ligadura. La desintegración beta de un protón en un neutrón necesita siempre producirse dentro de un núcleo atómico. Así, aparentemente, la energía también puede convertirse en masa: la segunda consecuencia de la ecuación de Einstein.


    La energía cinética necesaria de las protones para que se produzca la reacción de fusión es del orden de 1 MeV. El núcleo del Sol se encuentra a unos 15 millones de grados y una presión de unas 300 mil millones de atmósferas, lo que parece suficiente temperatura y presión para agitar y juntar los protones para puedan superar la repulsión eléctrica mutua. Pero si hacemos el cálculo[2] vemos que se queda corto con algo menos de una milésima de esa energía. ¿Cómo se produce entonces la reacción? La respuesta es que interviene un efecto cuántico conocido como efecto túnel que permite a las partículas con menor energía cinética de la necesaria para, desde el punto de vista clásico, penetrar una barrera de potencial, tener una cierta probabilidad cuántica de hacerlo.


    La moraleja es que no sólo con la ecuación de Einstein podemos entender cómo brilla el Sol. Necesitamos también los efectos cuánticos. ¡Dios también juega a los dados en el interior de las estrellas!.

    El lector más atento habrá notado cierta contradicción. Por un lado decíamos que el núcleo de helio pesa menos que los cuatro protones iniciales para luego afirmar que los componentes del núcleo de helio (dos protones y dos neutrones) pesan más que los cuatro protones iniciales. Algo se nos escapa. Y lo que se nos escapan son las fuerzas nucleares fuertes. La transmutación entre protones y neutrones está controlada por la fuerza nuclear débil. Pero la ligadura de estas partículas en el núcleo se comporta como una energía potencial negativa, es decir, de manera análoga a un objeto atrapado en un planeta que necesita una velocidad de escape para salir, que es en última instancia la que hace disminuir la masa del núcleo de helio con respecto a la suma de las masas en reposo de sus componentes. La energía del Sol procede en última instancia de la energía potencial de la interacción fuerte.

    Pero en física siempre hay una última sutileza...

    Decir que la masa se convierte en energía y la energía en masa es sólo una manera de mantenernos en nuestra zona de confort de la física clásica. No hay una diferencia esencial entre la conservación de la energía en una reacción química y una nuclear. Podemos intentar identificar la forma de la energía (cinética, eléctrica, nuclear, etc) y cómo cambia de unas formas a otras, pero lo cierto es que podemos llamar masa a la cantidad E/c² o podemos conformarnos con la masa en reposo. Y ésta sólo parece ser una cantidad (como masa en reposo) característica de partículas subatómicas simples, puesto que la masa por ejemplo del protón resulta esencialmente de la energía de ligadura de sus quarks contituyentes mediada por gluones.

    La imagen que un físico nuclear tiene de un protón es más parecida a la siguiente, donde las espirales representan gluones (el mediador de la interacción nuclear fuerte), las esferas rojo-verdes emparejadas representan pares virtuales quark-antiquark y las esferas individuales los tres quarks de valencia que habitualmente se mencionan como componentes de un nucleón.


    ¿Son entonces energía y masa lo mismo?

    La respuesta corta es un rotundo NO. Iremos más tarde con los matices. En realidad veremos que la entidad fundamental en relatividad es lo que se denomina energía-momento y no tanto la masa. Para intentar entender este aspecto, vamos a empezar con un caso más sencillo relacionado con la interacción de distancias y tiempos.

    La dilatación del tiempo a través del intervalo

    Si medimos el tiempo transcurrido entre dos eventos --como por ejemplo la emisión de un fotón en la fotosfera solar y su recepción en la superficie terrestre-- y medimos la distancia entre ambos eventos (la distancia al Sol en este caso), hay una cantidad muy importante en relatividad que denominamos intervalo, también denominado tiempo propio.

    El intervalo es muy fácil de determinar. Como si se tratase de un simple análogo del teorema de Pitágoras, podemos utilizar un triángulo rectángulo para entenderlo


    Aplicando el teorema de Pitágoras, tendremos

    intervalo² = tiempo² - distancia²

    Para ver que la formulita es sencilla de usar, los fotones emitidos por la superficie solar tardan algo más de 8 minutos en llegar desde el Sol a la Tierra recorriendo una distancia de unos 150 millones de km, aunque para hacer el cálculo mucho más sencillo podemos expresar esa distancia como 8 minutos-luz. Si sustituimos entonces con las unidades apropiadas

    intervalo² = (8 min)² - (8 min-luz)² = 0

    El intervalo es por tanto cero. Nuestro triángulo quedaría en ese caso algo así como


    Es decir, un triańgulo totalmente aplastado y convertido en una línea horizontal, lo que sólo es un reflejo de que para un fotón --y para cualquier partícula que viaje a la velocidad de la luz-- se pueden utilizar distancias y tiempos como dos cantidades intercambiables que difieren sólo en un cambio de unidades dado por la velocidad de la luz.

    Distancia = velocidad de la luz × tiempo

    Y sin embargo a nadie se le ocurriría decir en general que la distancia y el tiempo son la misma cosa, aunque precisamente la teoría de la Relatividad nos mostraras que son dos cantidades íntimamente relacionadas.

    Cuando medimos dos eventos que se producen en el mismo lugar, la distancia es nula y el triángulo queda aplastado verticalmente se la siguiente forma:


    Vemos que en ese caso el intervalo coincide con el tiempo y por eso se le denomina muchas veces tiempo propio.

    El intervalo tiene una propiedad interesante. Es un invariante relativista. Esas dos palabras juntas significan que, a diferencia de nuestras medidas de tiempos y distancias, el intervalo no depende del estado de movimiento del observador que haga las mediciones. Podemos utilizar ese hecho para, de una manera muy sencilla, deducir la relación entre los intervalos de tiempo que mide un observador en reposo y otro que se mueve con cierta velocidad subido a un cohete.

    Supongamos para ello que Estrella viaja en un cohete a velocidad v y que su gemela Consuelo se queda en tierra. Estrella mide el tiempo t para, por ejemplo, un latido de su corazón, el tiempo propio de cada latido. Consuelo sin embargo mide un tiempo T


    Dibujemos ahora nuestro triángulo en unidades coherentes (segundos) tal y como lo haría Consuelo


    Donde hemos sustituido en rojo el intervalo medido por Consuelo por el medido por Estrella (¡pues son iguales!) que es igual a su intervalo de tiempo t al estar quieta, desde su punto de vista.

    Del triángulo anterior deducimos otro viejo conocido de todos los apasionados de la física; la dilatación del tiempo


    Por ejemplo, si el cohete se mueve al 89% de la velocidad de la luz (v/c = 0,89), Consuelo medirá que los latidos del corazón de Estrella van la mitad de rápidos que los suyos (T = 2 t).

    Advertencia al lector: aunque he utilizado dos gemelas, lo que estamos explicando es la dilatación del tiempo sin explicar detalladamente qué es lo que ocurre si Estrella regresa con su cohete a la Tierra, lo que se conoce como Paradoja de las gemelas.

    Masa, momento y energía

    La situación es exactamente análoga para las cantidades masa (invariante relativista análoga al intervalo), energía (análoga al tiempo) y momento lineal (análogo de la distancia). Recuerden de sus clases de secundaria que el momento no es más que una medida de la “cantidad de movimiento” de un objeto e igual, clásicamente, al producto de la masa por la velocidad. El momento es esa cantidad que hace preferible que tiren una pelota de ping pong a 60 km/h que chocar con un tren a tan solo 5 km/h.

    En analogía con la definición de intervalo, podemos definir el siguiente triángulo rectángulo.


    Y utilizando el teorema de Pitágoras, escribir la relación

    Energia² = Masa² + Momento²

    Si escribimos las unidades apropiadamente, necesitamos añadir un factor de conversión conveniente, que es alguna potencia adecuada de la velocidad de la luz.


    Esa es la versión sofisticada de E = m c² que utilizan los frikis con un doctorado en física. Uno de los objetivos de esta entrada era llegar hasta aquí. Esa relación es mucho más general e interesante que la famosa ecuación de Einstein. La masa que aparece allí, al ser un invariante (justo como lo era el intervalo), tiene que corresponderse con la masa en reposo de la partícula en cuestión. De hecho, vemos que cuando una partícula está en reposo y el momento es cero, se reproduce la famosa relación de Einstein E = m c² . Pero ahora deberíamos entender que esa energía es la energía en reposo al igual que m se corresponde con la masa en reposo de la partícula.

    Nuestra representación sería una línea vertical donde masa y energía son dos maneras de medir la misma cantidad y sólo difieren en un mero factor de conversión de unidades: el cuadrado de la velocidad de la luz.


    Partículas sin masa en reposo

    Pero mucho más interesante en esa ecuación es ver lo que ocurre cuando la masa en reposo es cero, como sucede con los fotones. Nuestro triángulo ahora se aplastaría sobre el cateto horizontal, lo que significa que su energía procede exclusivamente de su movimiento a la velocidad de la luz.


    En este caso particular, energía y momento se comportan como dos aspectos de la misma cantidad que sólo difieren en la conversión de unidades con un factor constante, que es la velocidad de la luz de nuevo. La historia se repite.

    Energía = velocidad de la luz × Momento

    De nuevo, nadie diría que energía y momento son la misma cosa o equivalentes en general.

    Dejemos que Minute Physics nos haga un pequeño resumen de esta última parte



    Masa en reposo y masa relativista: la eterna polémica

    Realicemos ahora un pequeño experimento mental actualizado análogo al realizado por Einstein en la deducción de su famosa ecuación. Imaginemos que nos vamos al LHC y observamos un evento muy infrecuente que es, después de hacer colisionar dos haces de protones de muy alta energía, la desintegración de un bosón de Higgs en dos fotones de radiación gamma [ver el magnífico vídeo de Rubén Lijo para presentar al bosón de Higgs]


    En la imagen podemos ver todavía al bosón de Higgs inicial en el centro, que obviamente ya no está ahí después de su desintegración. Vamos a considerar el punto de vista de un observador que viese el bosón de Higgs inicialmente en reposo. Según los resultados experimentales la masa en reposo del Higgs está en unos 125 GeV, que es equivalente a la energía inicial de nuestro sistema. El momento es cero, puesto que el observador seleccionado ve el Higgs sin ningún movimiento.

    Después de la desintegración tenemos dos fotones que se mueven en sentidos opuestos llevando la mitad de energía cada uno, puesto que la energía es una cantidad conservada. Como el momento también es otra cantidad conservada, tiene que ser cero. Eso significa, como habíamos visto, que cada fotón lleva un momento igual a su energía. A diferencia de la energía, el momento tiene dirección y sentido (es una magnitud vectorial) y se suma como tal. Dos momentos iguales en sentidos opuestos suman cero.

    Nuestra regla del triángulo nos dice que debería existir una cantidad M igual a la suma de las energías de los dos fotones M = E/c² Esa cantidad M es lo que se ha denominado masa relativista. Pero piensen que en este caso es una cantidad distinta a lo que pensamos normalmente como masa. Es un número aplicado al sistema físico formado por los dos fotones. ¿Dónde se encuentra esa masa? Para darle cierta coherencia, algunos interpretan esa masa como masa en reposo de un punto situado en el centro geométrico de los dos fotones al que se suele denominar, por razones obvias, centro de masas.

    El problema surge cuando deseamos aplicar esa noción de masa relativista a una sola partícula. Pensemos ahora en un solo fotón. Como obviamente contienen energía, podemos asignarle una cantidad E/c², que podríamos denominar masa relativista de un fotón. Pero tenemos que pensar que esa cantidad es diferente de la M anterior, pues no procede de la regla del triángulo --recordemos que para un fotón la regla del triángulo era una líneas horizontal con masa en reposo nula. Esa masa relativista aplicada a una partícula encima no es invariante, es decir, depende de la velocidad de la partícula. Así que parece ser una cantidad poco recomendable de manejar y de hecho los físicos de partículas suelen “condenar” su uso.

    Pero entonces, ¿tiene o no tienen masa los fotones?

    Einstein descubrió su famosa relación utilizando un ejemplo similar al de la desintegración del Higgs, comparando los puntos de vista de dos observadores, uno en reposo y otro en movimiento respecto al centro de masas. Sin embargo, Einstein tenía claro que se refería siempre a la masa inercial. Intuitivamente tendemos a asociar masa a un “trozo de algo” y la asociación de una masa a una partícula nos resulta natural. De hecho, la definición de masa que nos suelen dar en la química de secundaria es algo así como “cantidad de materia que contiene un objeto” y que Isaac Newton definió como el producto de la densidad por el volumen. La masa inercial, sin embargo tiene una definición muy concreta y no es más que la división entre momento y velocidad[3]

    M = p/v

    Si queremos ser consecuentes con esa definición, es cuando surgen una gran cantidad de matices, como que el fotón tiene masa inercial coincidente con su masa relativista

    M = p/c = E/c²

    Uno de los atractivos de esa “masa” relativista es que nos podría hacer entender de manera natural, y desde un punto de vista newtoniano básico, el hecho que los fotones pesen. ¿Cómo sabemos que los fotones pesan, es decir, son atraídos por la gravedad? ¡La famosa medida de Eddington de la curvatura de la luz en el Eclipse de Sol de 1919! Sin embargo no hizo falta esperar a dicha medida. Einstein sabía, desde el punto de vista teórico, que tenía que suceder. Incluso en la teoría gravitatoria de Newton, los fotones, según nuestra nueva “masa” relativista tendrían que ser atraídos por la gravedad, aunque de manera distinta a como lo hace en Relatividad General.

    El ángulo de desviación de la luz al pasar cerca de un cuerpo masivo es en la teoría general de la relatividad justo el doble que en la newtoniana. Fuente de la imagen



    La clave del descubrimiento de Einstein y su predicción de la curvatura medida por Eddington es que la gravedad no atrae a la masa. Atrae a esa extraña entidad que hemos denominado energía-momento del fotón. Por tanto vemos que la masa inercial que coincide con la masa relativista también es la masa gravitatoria[4], lo que parece señalar --aparentemente-- que estamos en la buena dirección[5].

    Si definimos para un partícula la masa relativista M = E/c², la regla del triángulo sería

    M² = (E/c²)² = m² + (p/c)²

    que como vemos, depende del momento y por tanto de la velocidad, --relación que puede deducirse de la anterior sustituyendo p = M v-- y que suele escribirse como


    Este aumento de la masa con la velocidad ha sido utilizada en muchísimos libros, incluidos algunos de texto como el de las famosas Feynman Lectures. Hawking la utilizó en su famoso best-seller la historia de El Tiempo para explicar por qué un objeto con masa en reposo no puede jamás alcanzar la velocidad de la luz. Y el aspirante a crackpot Michio Kaku lo utiliza en el vídeo del tema musical que insertaba al comienzo de la entrada.

    Einstein nos llama a capítulo

    En una carta publicada por Einstein en 1948 y dirigida a Lincoln Barnett, matizaba

    No es bueno para introducir el concepto de la masa M = m /(1-v²/c²)½ de un cuerpo en movimiento para el que no puede darse una definición clara. Es mejor no introducir otro concepto de masa que 'la masa en reposo' m. En lugar de la introducción de M, es mejor hablar de la expresión para el impulso y la energía de un cuerpo en movimiento ".


    Bien, ese matiz no impidió al propio Einstein utilizar el concepto de masa relativista, pero lo hizo generalmente en el sentido de cantidad conservada en un sistema de partículas, tal y como hemos visto en el ejemplo de la desintegración del Higgs. La masa relativista de un sistema de partículas tiene las dos propiedades interesantes para un físico: es una cantidad conservada y es invariante, es decir, es igual antes y después de un cambio --como la desintegración del bosón de Higgs-- y es independiente del estado de movimiento del observador.

    El origen de la masa

    La física es un arte complejo, pues hace operacionales conceptos que proceden de nuestro intuición. Entendemos la masa como un trozo de algo pero la física nos ayuda a profundizar en teorías que nos enseñan generalmente cómo nuestra intuición sobre ese concepto iba desencaminada.

    Hemos visto el jaleo montado con varios conceptos de masa: masa en reposo y masa relativista en la Relatividad Especial o como masa inercial y masa gravitatoria, estos últimos con nosotros desde Newton. Entender el papel de cada uno de esos conceptos y su interrelación y equivalencia es lo que nos ha llevado a entender mejor el funcionamiento del mundo.

    La equivalencia entre masa inercial y gravitatoria llevó a Einstein a la Teoría General de la Relatividad. Curiosamente, en la TGR sobra el concepto de masa, que se sustituye por esa entidad que habíamos denominado energía-momento (algo así como nuestros triángulos). En determinada condiciones, sin embargo, puede identificarse la energía-momento con la única masa relevante, que es la masa gravitatoria activa, es decir, la que crea el campo gravitatorio o equivalentemente deforma el espacio-tiempo, como sucede por ejemplo con una estrella o un planeta. Las demás masas (pasivas) se mueven en trayectorias ya determinadas por la primera.

    La equivalencia entre masa y energía nos ha llevado a entender mejor los procesos nucleares. Y de hecho ahora sabemos que, al menos parte de lo que intuimos como masa, es en realidad consecuencia de las energías puestas en juego en la interacciones. Sabemos la masa de los objetos cotidianos es debida los núcleos de los átomos que los forman. Esos núcleos están formados por protones y neutrones. Hemos visto, además, que la masa de un núcleo atómico es menor que la suma de las masas de los nucleones que los forman. Ese defecto de masa es debido a las fuerza nucleares, como explicábamos más arriba.

    Pero sabemos, además, que los protones y neutrones están formados por quarks en un campo de gluones, partículas portadoras de la interacción entre quarks. Así, lo que denominamos la masa en reposo de un nucleón (protón o neutrón) es más de un 90% debida a la energía cinética de los quarks y gluones y a sus energías potenciales debido a la interacción nuclear fuerte (las cifras pueden diferir). [Ver este vídeo con una magnífica explicación]

    Entender el origen de la masa tiene mucho que ver con entender la estructura de la materia y la física al nivel más fundamental. Así, después de su reciente descubrimiento, hemos oído como el bosón de Higgs ayuda a entender de dónde procede la masa de las partículas del Modelo Estándar, pero lo cierto es que no parece que soluciones el problema de entender de dónde procede toda la masa del propio Higgs. Tenemos además que podrían existir partículas más allá del Modelo Estándar. Por ejemplo, todavía no sabemos las partículas que forman la materia oscura y en último término no sabemos qué es la energía oscura y ni si está de alguna manera relacionada con el mecanismo de Higgs. Todavía queda un largo camino por recorrer, pero entender el origen de la ecuación más famosa de la física ha sido, sin duda, un enorme salto adelante en nuestra comprensión del origen de la masa.

    Anotaciones

    [1] No hace falta mucha sofisticación técnica para estimar la luminosidad solar. Se puede partir de nuestra medida de la constante solar de 1360 W/m² y multiplicar por la superficie de la esfera cuyo radio es la distancia Tierra-Sol. Queda como ejercicio para el lector.
    [2] La energía media por partícula es del orden de kT donde k es a constante Boltzman y T la temperatura. Luego la energía media por partícula en el núcleo solar es de ~1,38 10⁻²³ J/K × 1.5 10⁷ K = 2,76 10⁻¹⁶ J ~ 2 keV
    [3] La definición de Newton era circular, en el sentido de que para definir la densidad es necesario primero contar con una definición de masa. La definición que hago en el texto de masa inercial también lo es. Ha habido una discusión histórica que continúa hasta nuestros días de lo que sería una buena definición formal de masa [ver Max Jammer(1999) en las referencias]
    [4] Que la masa inercial sea igual a la masa relativista puede sorprender a más de uno. Pero lo cierto es que si consideramos una caja de paredes completamente reflectantes donde ponemos un fotón, la masa inercial (y gravitatoria) de la caja aumenta según la masa relativista del fotón. Por supuesto, todo se trata de un juego de palabras. Cuando uno hace los cálculos no se preocupa de esos juegos de definiciones. ¡Calla y calcula!
    [5] Para los puristas, como con todo este embrollo, estamos haciendo interpretaciones. A la hora de hacer los cálculos de la trayectoria de un fotón sólo hace falta seguir la regla de que su intervalo es nulo y aplicarlo a la métrica en cuestión, la solución de Schwarzschild en este caso.

    Referencias

    Art Hobson Energy and work

    Art Hobson Teaching E = mc2: Mass Without Mass The Physics Teacher 01/2005; 43:80-82. DOI: 10.1119/1.1855741

    Baierlein, Ralph Teaching E=mc2: An exploration of some issues The Physics Teacher, Volume 29, Issue 3, pp. 170-175 (1991).

    Baierlein, R. (2007), “Does nature convert mass into energy?” Am. J. Phys., 75(4): 320–325.

    Carl G. Adler Does mass really depend on velocity, dad? Am. J. Phys. 55, 739 (1987); http://dx.doi.org/10.1119/1.15314

    Ethan Siegel. Where Does The Mass Of A Proton Come From? Start with a Bang Forbes 2016

    Ethan Siegel. The Sun's Energy Doesn't Come From Fusing Hydrogen Into Helium (Mostly) Start with a Bang Forbes 2017

    Eugene Hecht An Historico-Critical Account of Potential Energy: Is PE Really Real? Phys. Teach. 41, 486 (2003); http://dx.doi.org/10.1119/1.1625210

    Eugene Hecht Einstein on mass and energy American Journal of Physics, Volume 77, Issue 9, pp. 799-806 (2009). DOI: 10.1119/1.3160671

    Eugene Hecht Einstein Never Approved of Relativistic Mass Phys. Teach. 47, 336 (2009); http://dx.doi.org/10.1119/1.3204111

    Eugene Hech How Einstein confirmed E0=mc² Am. J. Phys. 79, 591 (2011); http://dx.doi.org/10.1119/1.3549223

    Eugene Hecht There Is No Really Good Definition of Mass Phys. Teach. 44, 40 (2006); http://dx.doi.org/10.1119/1.2150758

    Feynman Lectures on physics Ch.15

    Frank Wilczek Origins of Mass

    Matt Strassler [July 10, 2013] The Two Definitions of “Mass”, And Why I Use Only One

    Max Jammer Concepts of Mass in Contemporary Physics and Philosophy, Princeton University Press, (1999).

    Okun’ L. B., “The concept of mass”, Physics Today 42 (6), 31 (1989)

    Okun’ L. B 2008 THE CONCEPT OF MASS IN THE EINSTEIN YEAR

    Peter M. Brown On the concept of relativistic mass

    Peter M. Brown A simple derivation of E = mc^2

    R. I. Khrapko Rest mass or inertial mass?

    Robert L. Lehrman, "Energy is not the ability to do work" Phys. Teach. 11, 15 (Jan. 1973)

    Simon Rainville et al.A direct test of E=mc2 Nature 438, 1096-1097 (22 December 2005) | doi:10.1038/4381096a

    The Equivalence of Mass and Energy Stanford Encyclopedia of Philosophy

    The Inertia of Energy. Mathpages

    T.R. Sandin, In defense of relativistic mass Am. J. Phys., 59(11), Nov. (1991)

    What is relativistic mass. Physics FAQ

    What is the mass of a photon? Physics FAQ

    2017-12-25 15:16 | Fisica | 5 Comentarios


    Referencias (TrackBacks)

    URL de trackback de esta historia http://ecos.blogalia.com//trackbacks/77234

    Comentarios

    1
    De: js Fecha: 2017-12-25 17:17

    muy currado. No sé si cumplirás tu objetivo de que realmente se divulgue el contenido a lectores que no se hayan leído el French, pero intentarlo tiene mérito porque conseguirlo es evidentemente complicado.



    2
    De: Pedro J. Fecha: 2017-12-25 19:25

    La idea, js, no era hacer divulgación, pues hay quien lo hace mucho mejor que un servidor. Era mostrar que lo realmente interesante de la física (y la ciencia en general), está en los detalles y que esa tendencia a suprimir las matemáticas y la accidentada trayectoria histórica de los conceptos puede hacernos caer en simplificaciones que soltamos como hechos indiscutibles, como que energía y masa son equivalentes, que la masa se convierte en energía o que la masa aumenta con la velocidad. O incluso, contrariamente, a despreciar la utilización de esas mismas interpretaciones cuando en determinadas aplicaciones o explicaciones nos hacen la vida más sencilla. Cuando al final, aparte del ¡calla y calcula! es todo una cuestión semántica. Así que uno debería mirar con sospecha aquellas interpretación que se venden como la correcta y sencilla.



    3
    De: js Fecha: 2017-12-25 20:45

    Ok, ahora lo entiendo mejor, creía que solamente querías divulgar. 100% de acuerdo que escapar de la complejidad equivale a no conocer.



    4
    De: Albert Fecha: 2017-12-31 13:03

    Magnífico post Pedro, muy bien trabajado.
    Como una referencia más para tus lectores, dejo enlace a este artículo corto sobre el tema que me parece también interesante:
    http://forum.lawebdefisica.com/content/66-Crece-la-masa-con-la-velocidad
    Saludos y ¡Feliz Año Nuevo! :)



    5
    De: Pedro J. Fecha: 2017-12-31 13:47

    Gracias Albert por el cumplido y la referencia. Feliz Año Nuevo igualmente.



    Nombre
    Correo-e
    URL
    Dirección IP: 54.166.172.180 (ef581de58a)
    Comentario
    ¿Cuánto es: mil + uno?

    portada | subir | Entradas anteriores→